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Communication Networks
Dominance Relations

Dominance Relation: For each pair i, j, with i # j, either A, — A, or A ;24
but not both; that is, in every pair of individuals, there is exactly one
who is dominant.
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Communication Networks

One-stage vs. Two-stage Communication

One-Stage Two-Stage
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Power

Dominance Matrices

One-Stage Two-Stage
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Power: the total number of one-stage and two-stage
dominances that an individual can exert. The power of
individual A, is the sum of the entries in the ith row of

the matrix 5
S=D+D



Power
Example - Athletic Contest

The results of a round-robin athletic contest are shown
below. Using the power definition above, rank the four
teams in terms of their athletic dominance.

Team A beats teams B and D.
Team B beats team C.
Team C beats team A.
Team D beats teams C and B.



| " Example - Athletic___Contest

Team A beats teams B and D.

Team B beats team C.
Team C beats team A.
Team D beats teams C and B.
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Power
Example - Athletic Contest

One-Stage Two-Stage
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Markov Chains

Definition

A Markov process is a stochastic (random) process
with the following property:

The probability of any future behavior of the process
depends only on the current state, not on its past
behavior. (e.g., Markov property)



Markov Chains
Example - Flipping Coins

You are going to successively flip a
quarter until the pattern HHT appears.




Example - Flipping Coins

State Diagram
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Markov Chains
Example - Flipping Coins

Question: On average, how many flips will be required
until the pattern HHT appears?

(v
)
Average number of flips required: y= v2
: 3
\Va J
(vl\ *
We know that v, =0. (Why?)  _|"
V3
0




Markov Chains
Example - Flipping Coins

Question: On average, how many flips will be required
until the pattern HHT appears?

v=1+ v

/yz %Z O\(vl\ (%‘ﬁ"‘%"z\
v=1+fv=1+|)s 0 K|l v, |=1+| Y%y, + %V,
\0 0 %)\V3) \ y2V3 J




Markov Chains
Example - Flipping Coins

Question: On average, how many flips will be required
until the pattern HHT appears?

v\ (1+%v,+4%v,)
v, |=| 1+ Yy, + )V,
\V3 \ 1+y2V3 Y,

vi=1+4%v,+ )V,
v, =14+ v, + v,
v, =14+ }4v,

Solve this system of equations



Markov Chains
Example - FIipping Coins

Question: On average, how many flips will be required
until the pattern HHT appears?

(v,\ (1+%v,+4v,)
v, |=| 1+ 4y, + v,
\V3) \ 1+%V3 ) -

==
vi=1+ v, + KV, :

v, =
3

v, =1+ 4v,

Yy =



Markov Chains
Example - Flipping Coins

Question: In the long run, what fraction of time is
spent in each state, no matter in which state the chain
began at time 07?

THT THTHTHTHT HT TTHTHTHTHTHH

nl =7






